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It is shown that in two dimensions the specific heat Cv(T,N) for an ideal gas of Fermi particles is identical 
with that for an ideal Bose gas for all T and N. This is true despite the great difference in the distribution 
functions of the two systems at low temperatures. To shed further light on this identity, the quantum 
statistics of ideal gases are investigated treating the number of dimensions as a continuous variable: n = 2 
is seen to be a special case. In the extreme relativistic region, the analogous special case is n — \. 

1. INTRODUCTION 

TH E thermodynamic properties of a system of 
noninteracting particles, obeying either Bose-

Einstein or Fermi-Dirac statistics, are well known1,2 

in three dimensions. At high temperatures, both systems 
approach the classical limit, with a specific heat given 
by the equipartition theorem. At low temperatures, the 
Fermi particles crowd into the lowest energy configura
tion, subject to the Pauli principle: The result is that 
a block of the lowest energy states is filled uniformly, 
with one particle per state. There is no such restriction 
for the bosons, and at temperatures below a certain 
transition temperature a finite fraction of the total 
number of bosons condenses into the ground state: 
this behavior is reflected by a discontinuity in the slope 
of the specific heat. 

In two dimensions it is well known that the Bose 
gas does not condense, and thus there is no discontin
uity in its specific heat. In this paper we prove that in 
fact the specific heat Cv(N,T) of an ideal gas of N 
bosons at temperature T is identical with that of an 
ideal gas of N fermions at temperature T, for all N and 
all r , in two dimensions. This is done in Sec. 2. The 
theorem is surprising at first sight, because at low tem
peratures the two distribution functions are very differ
ent. Although the bosons do not condense, they do 
crowd into the lowest few states, giving a sharply peaked 
distribution; the Fermi distribution is similar to the 
three-dimensional one with uniform occupation of all 
states up to the Fermi energy. (This is exemplified by 
comparing the behavior of a charged, two-dimensional 
Bose gas with that of a Fermi gas in a magnetic field 
at low temperatures: the two results are altogether 
different.3) 

The theorem serves as a striking example that the 
specific heat can be an unreliable guide to the distri
bution function of a system. 

To shed further light on the above theorem, in Sec. 3 
we consider the thermodynamic properties of ideal 
quantum gases, regarding the number of dimensions 
as a continuous variable n. If the usual high-tempera-

1 A. Einstein, Ber. Berlin Akad. 261 (1924). 
2 F. London, Phys. Rev. 54, 947 (1938). 
3 R. M. May, Phys. Rev. 115, 254 (1959). 

ture cluster expansion is made,4 then for ri> 2 the results 
are similar to those for the three-dimensional case: 
Cv(N,T) has the equipartition value, with first-order 
corrections which are positive for bosons and negative 
for fermions. The Fermi CV decreases monotonically to 
zero at T=0; the Bose CV must also reach zero at 
r = 0 , and this it does by means of a discontinuity in 
slope at a critical temperature, below which tempera
ture the gas condenses. (For n>4 the Bose gas has a 
discontinuity in CV.) n=2 is the unique case for which 
the first-order corrections to the equipartition value of 
CV vanish. I t is also the value of n for which the Bose 
gas just fails to condense. For n<2, the Bose CV de
creases monotonically to zero, while the Fermi CV 
increases above the classical value but then decreases 
smoothly to zero at r = 0 . 

Finally, in Sec. 4, we investigate the quantum gases 
in the extreme relativistic region, again regarding the 
number of dimensions as a continuous variable. I t is 
shown that the behavior of the extreme relativistic gas 
in n dimensions has the character of the behavior of the 
nonrelativistic gas in 2n dimensions. 

2. PROOF OF THEOREM ON CV(N,T) 

The grand canonical partition function, exp(—a&), 
for an ideal Bose gas (05) or an ideal Fermi gas (OF) 
is given by 

ttB = ±kT£, l n [ l = F e x p ( - i 7 - a £ k ) ] . (1) 

This formula is valid for an arbitrary number of di
mensions: k labels the energy states; a = 1/kT; rj^ —an, 
where jx is the chemical potential. All other thermo
dynamic functions may be derived from 12: In particu
lar, the number of bosons or fermions present is 

F k exp(77+aEk)=Fl 
(2) 

(For Bose statistics, negative occupation numbers are 
avoided by the demand rj>0.) The relation (2) may be 
used to eliminate 77 in favour of N in (1). 

For ideal particles in a cubical box with periodic 

4 J. Mayer and M. Mayer, Statistical Mechanics (Tohn Wiley & 
Sons, Inc., New York, 1940)'. 
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boundary conditions, the energy values are 

Ek=m2/2m; k=(2i r /L)v , (3) 

where v are the points in a unit cubical lattice. Provided 
mkT/fi2>L~2 we can replace sums by two-dimensional 
integrals in (1) and (2) to get 

v r 
2B = ±kT— / dx ln[l=Fer<i+*>] (4) 

F X2Jo 
and 

that is, 

v r dx 
NB=- / ; 

F \2Jo e^*^l 

Ar B =q=(F/X 2 ) ln( lT«r i ) . 

(5) 

(6) 

V is the two-dimensional "volume," and X is the "ther
mal wavelength" defined by 

\2=^7rafi2/2m. (7) 

Note that the integral in (5) for NB has no upper 
bound (it diverges logarithmically as rj —>0), so that 
there is no condensation phenomenon for the two-
dimensional Bose gas. However, we can see that at low 
temperatures the bosons will crowd into the low-lying 
states to give something like a momentum condensation 
(e.g., if charged, they give an "imperfect" Meissner 
effect which is practically indistinguishable from the 
perfect London one of the three-dimensional Bose gas). 
On the other hand, we see that the two-dimensional 
fermions at low temperatures behave just as three-
dimensional fermions. 

For convenience we define quantities T0(N) and 
T(N,T): 

N=V/\o2; T(N,T) = exp(-T0/T). (8) 

To is a temperature which divides the classical regime 
(T>To and r ~ l ) from the regime of quantum statis
tics (T<TQ and r « l ) . This statement is made clearer 
by rewriting the definition (8) as 

T\112 mean interparticle separation 

& thermal wavelength 
(9) 

The total energy of the system can be written from 
(4): 

V r°° xdx 
EB=kT- J — ; . (10) i \2Jo e*+*=Fl 

Expanding the denominator and integrating, and also 
using Eqs. (6) and (8) to eliminate 77, we get 

and 

EB(N,T) = Nk(T2/To)F+(l-r; 2) (11) 

EF(N,T) = Nk(T2/To)FJ^-l; 2) , (12) 

where the functions F+ and F_ are denned in general by 

F±(z]m)=Z ( ± l ) m - (13) 

We now prove a lemma, namely, the mathematical 
identity 

' & » ) • 
: F + ( l - r ; 2 ) + J ( l n r ) 2 (14) 

with r < l . To do this we note that F+ and F „ can be 
written 

F ± ( z ;2 ) = =F 
ln(l=F/) r8in{V 

Jo t 
-dt. (15) 

Then, changing the variable of integration from t to 
s=t/(l+t), we get 

*<h'H • l n ( l - * ) 

0 s(l—s) 
-ds (16) 

1-rds rldr 
\n{\-s)-\ ~ l n ( f ) , (17) 

which establishes the identity (14). 
Making use of (14) in (11) and (12), and remembering 

the definition of r[cf. Eq. (8)], we can write 

EF(N,T) = EB(N,T)+iNkT0 (18) 

That is, in two dimensions, the Bose and Fermi dis
tribution functions are just such that, for a given N 
and T, the total energies of the two systems differ by 
a quantity proportional to N and independent of T. 

From the definition 

Cv(N,T)=(dE/dT)NtV, (19) 

it follows immediately that 

[cF(^,r)]n=CCF(^,r)>. (20) 
As a corollary it follows that a mixture of A î fermions 

and N2 bosons has exactly the same specific heat curve 
as a system of iVi+i\^2 fermions or Ni+iV^ bosons. 

3. IDEAL GASES IN n DIMENSIONS 

In order to gain further understanding of the results 
in Sec. 2, we now formulate the expression for the grand 
canonical potential Q, (and hence all other thermody
namic functions), regarding the number of dimensions 
in which the particles move as a continuous variable n. 

To replace sums by integrals in Eq. (1) after the style 
of Sec. 2 [cf. Eq. (4)], we note that the corresponding 
density of states with wave numbers between k and 
k+dk in n dimensions is 

lV/(2TrYlS(n)k"-Hk, (21) 
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where V is the ^-dimensional "volume" and S(n) is 
the surface area of the unit sphere in n dimensions 

S(n) = 2*r»'2/r(»/2). (22) 

Then, using the thermal wavelength defined by (7), 
we can write 

/ 2m yi2 V 
aB=±kT[ 1 

* \4ra*V T(n/2) 

V 
-kT—F±[e-

: / x<n> 
Jo 

K+i)- (24) 

The F+ and F_ functions are defined by (13). All other 
thermodynamic quantities can be derived from ft; in 
particular, the number of particles is 

NB~-
r i * 
nT(n/2)]0 

V / n\ 
.--Fjtn;-). 
\n \ 2/ 

oo x(n!2)-l^x 

F \nT(n/2)Jo ê -*=F.l 

V 

(25) 

(26) 

Notice that for Fermi statistics, the integral for 
NF can always be made arbitrarily large (provided that 
n>0) by making rj large and negative. Thus, there is 
no upper bound to the expression for NF, and hence no 
condensation phenomenon in ideal Fermi gases. On the 
other hand, for Bose statistics (remembering the re
striction rj>0) we see that the integral in (25) has an 
upper bound once n> 2: for given NB we can then define 
a critical temperature Tc, 

NB=(V/\c
n)Un/2); (n>2). (27) 

[f (z) is the Riemann zeta function6 of order z.~] Above 
Tc all particles can be accommodated above the ground 
state; below Tc the replacement of sums by integrals 
in (1) is not valid, and the ground state contains a 
finite fraction of the total number of Bose particles: 

No=N{l-(T/Tc)
nl2}. (28) 

Thus, we already see that n=2 is a special case in the 
continuum of dimensions for Bose statistics. 

Next we take the usual high-temperature (classical) 
limit. A temperature T0 is defined, in n dimensions, 
analogous to that defined by Eq. (8): 

N==V/\on; N\n/V=(To/T)ni2. (29) 

Then as before TQ divides the regime of classical be
havior from the regime where quantum effects come into 
play. (Notice that for Bose statistics in ri> 2 dimensions, 

6 See, for example, E. Whittaker and G. Watson, Modern 
Analysis (Cambridge University Press, London, 1946). 

To^ TC.) For T> To we can expand 0 and other ther
modynamic quantities by use of the power series ex
pansion (13). Also, we can use (26) to eliminate y in 
favor of Af[i.e., in favor of T0(N)'] to get 

QB=-NkT 
F 

1=F-
2<" 

+ +• (30) 

•i*>-Hx ln(l=Fe-"-*) (23) whence 

nil 

l. /Toy'2 

n/2)+l\ J1 J 

(!__l_V5iy. 

n { /n \ 1 /To\ 
[Cv-]B=-Nk 1± — 1) (.—) 

F 2 [ \2 /2(nM+1\T/ 

-(n-l)(- ?_y^y+...l (31) 

The leading term in (31) is the classical equipartition 
value for CV, with %Nk for each degree of freedom. 
n=2 is obviously a special case in that it is the only 
value such that the first-order correction term vanishes. 
The second-order term is common to both statistics. 
For n>2 we have the situation familiar from three 
dimensions: The Fermi specific heat falls steadily to 
reach zero at T=Q [as it must: CV(r=0) = 0 is de
manded by the third law of thermodynamics]]. The Bose 
specific heat initially increases above the equipartition 
value—we can see that it increases down to Tc, then 
there is a discontinuity in the slope and Cy decreases to 
zero. For n<2, it is the Bose-gas specific heat which 
decreases monotonically to zero. The Fermi CV must 
be an analytic function of T, and we can show that it 
rises above the classical value to attain a maximum 
value at T^T0 and then falls smoothly to zero at T=0. 

To conclude this section, we write down the expres
sion for Cv which holds for all T except for the Bose gas 
below its critical temperature Tc [cf. (27)]: 

LCVIB 

\nNh 

-©K^D/̂ H-1)]'<32) 

with r\ given as a function of N and T by Eq. (26). The 
exceptional case, the Bose gas for T<Tc, is easily seen 
to give 

[CV(T<TC)1B 

(->)[<H/<3]©" -
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where n>2. It is clear that [CV]F is always regular 
(for n>0) even though it is only monotonic for n>2. 
More interesting is the Bose gas for n>2: We can cal
culate the discontinuity in the specific heat at T~Tc 
by taking the limits as T tends to Tc from above, 
(CV)+, and from below, (CV)~: 

(Cv)~— (Cv)+ n\ 

inNk 2 :«e)/«c-o] (34) 

Note that f (z) diverges for z^ 1, so there is no discon
tinuity in Cr so long as 

4£»(>2). (35) 

For n>4: the Bose-Einstein condensation gives a 
thermodynamic transition of the first kind, with a 
finite discontinuity in CV. 

4. EXTREME RELATIVISTIC LIMIT 

In the extreme relativistic limit, the energy levels 
for the ideal gas, in an ^-dimensional cubic box with 
periodic boundary conditions, assume the form 

Ek=nck; k=(2w/L)v, (36) 

where v are the points in an ^-dimensional unit cubic 
lattice. By this we mean that we are considering a 
problem in which particles with wave numbers such that 
M<mc are to be regarded as being in the ground state. 
This is the case if the rest mass m —» 0, or in general if 
kT^>mc2. (In the earlier work in Sees. 2 and 3, the rest 
energy mc2 was of course absorbed into the chemical 
potential fx.) 

Putting (36) for Ek into Eq. (1), and replacing sums 
by ^-dimensional integrals after the manner of Sec. 3, 
we get for the relativistic grand canonical potential 

2 V 

F (4ir)n/2T(n/2) 

Jo 
X / kn-Hk ln(l=Fe-*-^c&). (37) 

That is to say, 

QB= -kTA{n)(V/\2n)F±(e-*; n+1), (38) 
F 

where X is the thermal wavelength as defined by (7), 
and A (n) is defined as 

2T(n) /T^hy 
A(n)--

Y(n/2)\ mc J 
(39) 

Notice A is independent of N and T, involving only 
fundamental constants and n. 

Equation (38) for Q is just like Eq. (24) of Sec. 3, 
multiplied by a function of n [namely, A {n)"] and with 
n in (24) replaced by In. Since n is a constant for a 
given thermodynamic problem, all thermodynamic 
functions in the extreme relativistic limit in n dimen
sions will have the same form as the corresponding 
nonrelativistic functions in (2n) dimensions. For ex
ample, we can write directly from Eq. (26) that 

NB=(V/\*»)A(n)F±(<r 
F 

';») (40) 

in the relativistic limit. 
[The significance of the factor A(n) is, of course, 

that the temperature which divides quantum from 
classical behavior is no longer To but its relativistic 
analog, Ti say, where 

T mean interparticle separation 

T\ relativistic thermal wavelength 
(41) 

The relativistic thermal wavelength is given by the 
analog of Eq. (7): \VQi^=cli/kT.~] 

With these remarks, together with the results of 
Sees. 2 and 3, we arrive directly at the following con
clusions. The specific heat Cv{N,T) of an extreme rela
tivistic gas of N bosons at temperature T is identical 
with that of N fermions at temperature T, for all N 
and r , in one dimension. If the number of dimensions 
n per particle in the relativistic gas is regarded as a 
continuous variable, then n—\ is the analog of the non
relativistic special case n~2. The relativistic Bose gas 
condenses for n>l, with a critical temperature Tc 
given by 

fkTc \ n 2Y(n) 
NB=V[ {•(»). (42) 

\2^hc) Yin/2) 

Moreover, for ri>2 this thermodynamic transition of 
the relativistic Bose gas is of the first kind, with a 
latent heat. (For 2^n>\ it is of the second kind.) 
In particular, the discontinuity in three dimensions 
is given by putting n=6 in Eq. (34) : 

(cy)--(cF)+ r(3) 
=3 =2.192 

3Nk f(2) 
(43) 

for the extreme relativistic Bose gas. (nNk is the rela
tivistic equipartition specific heat in n dimensions.) 

ACKNOWLEDGMENTS 

It is a pleasure to thank Professor H. Messel for the 
facilities provided. This work was supported in part by 
the Nuclear Research Foundation within the University 
of Sydney. 


